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A COMMARISON OF TESTS FOR SPATIALLY
PART 1

DISTRIBUTED MATERIALS BALANCES

R. ™icard, A. Goldman, and J. P. Shipley

Los Alamos National Laboratory
Los Alamos, New Merico B7545

Abstract

The two hnox case 1llustrates aspects of a
one-sided tes: of hypothesis o' means of a bivar-
1ate normal with known correlstion matrix. One
important applicat.on 1s testing for materials
loss at a nuclear prucessing facilitv., <Jompari-
sons among five lest procedures reveal that a

simrle sum approacn 1% qQuite competitive with

more complex methods.

1. Irtroduction

racilities engaged 1IN processing nuclear
materi1als are tvpicallv corposed of contrel unite
or Mﬂ[!’flll! bﬂlln(‘f areas where nu(lrﬂr mattler
13 measured. An idealired svster with two mate-
rials balancer 1¢ depicted an Fagp, . 1t all
material 1¢ atcounted for,

]

TTout - Waste Strepr | Waste Strear 2

= Outpur = 0

If loss or diversjor of material toox place ain

the firat "box," then the f(1rst balance would

satinfs

X Input - wWaste Stream | - Tranafer - 0 .,

The objective of ssfeguards work 1a 'the

timely detection of diversion of significant

quentities of nuclear material... . lIndependent
measurements of known precision are obtsined to
monitor the process, and the problems of interest
are detection (is all material accounted for?),
ard location (if some material is missing, from

which box{(es) was it diverted?)

Mathematical formulation ot these problems

th
1s as follows. Le. x denote the 1 observed ma-

terials balance. Because adjacent boxes depend

on the same transfer measurement, the 1xl}

are negatively correlated. Let u, dencte the
\ n acty. ]l materials balarce, and L the vector of
{ }. The hypothesis of 1nterest (cr the detec-
tion problem 1s that no loss (diversior, has taken

piace 1n inv of the boxes, that 1s,

It loss 15 detected, the location problem entails

identitication of which of tne {Ul} ate positaive.

Of course, the above 1s an oversimplitied
version of what 1s encountered in practice. Typa~
caily, systems are composed of 5-10 boxes, ecach
transfers,

box having a number of associated

inventories, and waste streams. Difticullies with
material holdup anc recalibration of measuremeat
devicer must be uealt with. Also, problems can
be sequential as well as spatisl in nature. De-
tection of losses in a given box over time is
often another ‘'‘mportant issue and has received
some attention (Cohhz). The groundwork pro-
vided here with the t- u-box problem should lsad

to valuable proceduyres fur the more genera

11, Methods for Detection

The two-boxn problem reduces to testing

Ho:ow N againat the one-sided alternative

"A: 9 2 9 . max {u‘.uz} >0 .
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Fig. 1. An example of a materials control unat

Measurement errors tend to he closely approxirated

BOX 2 _OuTPUT |
WASTE STREAM 2
consisting of two materials balance areas.
where z* 18 chosen S0 that Lo
[

by a normal disctridution, and bere it 15 assumed

that the observed materiale balances satisfy
©
l‘ and ¢ < 01 known .

A varietv ot procedures have been proposed
tor such testang, Two that are quite simple an!
mimic cormon qualaity control techniques are de-
scrived below.

A, The SI'M Test., Some  hat akin to the CUSUM
balances «x and x. are summed

’ -
and used to teet for diversion. The null

statistaic,

hypothesis 1f rejected at leve: a when

(xl ~x2)/v’2o20>:¢l .

=-Q

wher! ? denotes the 100(1 - a)  per-

1_
centile ot the atandard normal a'str . bution,

B. The MAX Teat. 1 addition to examinming the
SUM, balances can be checked individually,

similar to 8 Skcwart approach., I1f anv of the

tests ir significant, M, 18 rejected. The

critical region is

— [ ]
max ‘xl‘“‘z'('l + (2)//2 + 2!\' > Zn

, i-a

test has size 1.

A third proceduse to ceoncider 1s the stantar.
multivariate treatment tor the unrestricted alter-
native HA: NI N O Specafaically, this 1y ae

follows,

v A " Test. The sta'istac

has & ¥° distribution with two dey-ees ot

rojects  when
d \ N
X' exceeds the 10011 ~ ) nercentile of & 1.

treedom  under “U' The test

A desirable quality of these procedures s
the simplicity of computat ons, More complex
tealn exiat In the area of one=sided alternatives
tn the multidimensional context. Twer are jpiven

here.

D, The Likelihood Katio _lest (LK1/.  This test

rejects for 'arge valuea of

=2 =1



wherc L is the maximum likelihood estimator
of U under HA' Critical values are de-

; . 3
termined from the relation (hudo’)

for ¢ > (0 and % the standard normal distribu-

tion function,

E. A Conditional Probability Test (CPT). condi-

tional on the observed x, Shiiahata develops

the CPT by detining the sets

] = Y —a—— ¢ 4 al R

A 4 o0 f'(v) tor ail o hA
. "

and
f\(x) f (v)

Forx = {v Pt ’f T for nll‘:‘ HA

| .
whers f tx) denotesw the fprobabaiiity  den-

1ty tunction of & hivariate normal with mean

and  covarjante ., Loosely  speaking,
A'x) containe porats that are nore supportive
ot lu) thar x, whereas HBix) contains points

that are less supportive. H, 18 rejected

for amall ratios of the probabilities

¢ t (v) dav /S
LS I

. t (v) dy .

Al ¢ B TC I

This test - practical only tor negative [,
as hoth A(x) and B(x) have small prohba’'ility

under H” when o 18 positive.

The LRT and CPT are relatively simnle compu-
tationr in the two-hnx came, bhut become complex
when the pioblem 18 extended (o four or mcre
boxes. Solution for @ in the LRT requires quad-
ratic progr. ng for nonzero op. For the CPT,
determination of the nets A(E) and 5(5) together
with their associated probabilities 13 .0t easy,
Critical valuea for either of the test statinstics

must bhe obtained numericallv.

Other procecures for the one-sided problem

t" it have been proposed, such as the test (.
.5 .

.. afsma and Smid, are not considered here

because they are not widely advocated.

IT11. Summary of Comparisons

Though much work has appeared corcerning the

statistical theory behind one-sided testing
(Porlman;6 Eaton7), no comprehensive comparison of
the variou approaches appears t. have been made.
Te this end simulation work was und2rtaker anc
some results are dirplaved 1u Tables [-V anc

Figs. 2-4,

Perhapr most surprisin, was the strong per-
formance of the SUM teci, whict has bLee ., a.:must
completely 1irored 1n the literature. Tnis test
proved superior to all others in tinding diversion
on the equiangular line, where the divertea quan-
tity 1s equally divided among the bhoxes, It .s
here that detection of the quantity 1s generally
least likely, thus, t(he procedure woras well
agsinst the "optimal” diversion strategy. it
should be noted that lack of exact measurement
often prevents & divertor from atteining tois
strategy, and alterratives ''close” (o the wqui-
angular line become 1mnortant. Here too the SUM
har ¢ narrow advartape over the Lhl and (P,
though thi: 1a otfset by larger disadvantapes
when loss 1a confined to one box. Howcver, ease
of application 1s .n amportant consideration in

meny practical circumstences so that the slight

overall loss of power may be acceptable.

The eotardard x2 tcst farer poorlv, con-
firnung long-'.eld contentions by NUenchu and
wthers that the usua, approach to unremtricted
alte r.ntives does not nave good properties in the
one-gided (ant. " wer of the MAX test 1s nearly
identical te the LRY for p ncar gero, but the
procedure is less effective: by comparison as the
strensth of the correlation increasse, Shir-
uhatu'na clsim that the CPT is more powerful
than the LRT appears unsubstantiated. Results

here ervre in accurdance with previous cornclusions



that CPT has a slight edge over LRT near the

equiangular line; nonetheless, the reverse holds

near the axes--a4 point not mentioned to date.

In shor., for the two-box problem, the LRT
and CPT share the best overall power properiies,

whereas the SUM apprnach 1s quite competitive and

very easy to 1implement iIn a practical setting.
]
The MAX and ¥y  tests :an be eqgually effeciive
in isolated situations.
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= 0.09)

Total Civersion

Units sre multiples o5f the (common)

0.5 1.0 1.9
LA 0.1038 0,.882 0.30%7 0.,64487
= -9 0,1248 0.2%34 0.4182 0.6319
Toe -0.8) 0, 2265 0.1h43 0.8%73 JL9TRY

standari deviation of ea h bux.

2.0 3.0 3.9 w0
0 594 U. 7387 0.8412 G.91K7
0,785 0. 90k 0.9697 0, 99049
0,99R0 0.900h 1 {

Notes: For the SIM gqtataistic, prohabiiity o! detection 18 i1ndependent of diver-

rion strategv.

Also, there simulated vealues are to b~ used tor comparison

with the other procedures; aligltly more accurate values car be ubtained

through uee of

ablea of the normal distiibution,



TABLE 11

LIKELTHOOD RATIO TEST (LRT)
(Table entries are probahbilities of detection (1 = 0.05)

Diversion

Ratio Total Diversion
Rox 1:Box ? nite are multiples of the (commnn) standard deviation of each box.
n.5 1.0 1.5 z.0 2.5 3.0 3.5 4.0
o= =015 3:3 0.0057 0.1683 0.2699 0.4052 0.5%423 0.6829 0.8022 0.8852
3:2 0.0454 0.1687 0.275n 0.4105 0.552 0.6934 0.8133 0.8942
3:1 0,0973 0.1769 0.2935 0.4375 0.592 0.7396 0.8523 0.9245
3:0 0.0k 0.2025% 0.355° 0.5403 0.7239 0.8601 0.9512 0.4803
AR 10 0.1174 0.2350 0.4107 0.5998 0.7679 0. 88606 0.9578 0.9873
102 0.1173 0.2:73 0.4125 0.6007 0.7731 0.8KY1 0.9593 0.9878
vl 0.:127 0.2439 0,5252 0.6180 . 1475 0.9050 0.9008 0.9%0b
5.0 0.1223 0.2597 0.461Y 0.6776 0.8440 0.9421 0.94%45 0.9907
n o= -0,8% 1. 022791 0.459] 0.8535 0 Y47ha 0.9971 0.998H 1 }
R 0.2 0.5605 0.8538 0.9723 0.9474 0,999y 1 1
31 0.22535 0.5612 G850 0.9790 0.9977 0.9999 1 1
3.0 0.2241 N.5690 0.8631 0.9806 0.9987 0.490899 i l
TABIFE 111
CONNTTIONAL PROBARTILITY TEST (CPT)
{iable entries are probabilities ot detection (4w 0,05
Diversion
Ratio Total Diversion
Rox 1 Rox 2 tinits are multiples of the (common) standard deviation of nrach box.
_f'_._')_ _L._O 1.’) 2.0 2.5 3.0 1.9 _ 2.0
om0 10 0.04KK  0,1B%2  0,2981 0,64%)  0,%02 0.7302 0,8367 0.91141
v 0.0ul? 0.18%6 0.2982 0.444%9 0.5%918 0.7118 0.8198 0.9171
[N 0.0497 0.187% 0.304b 0.45%30 0.6097 0.7519 0.8% 1 G.929.
3} C.itia 0,18132 0.326% G.LdT4 0. L0602 0.48020 0.,9000 0.9602
Noe =LY [} O.1170 0.2640% 0.6200 O.hlab 0,786/ 0.8984 0,965 U, 98%0
i O, 02419 0,619 0 6lal 0.7869 0,898+ (,9602 0.9899
§ [UN B 0,24 "4 Q.428) 0.62121 O, 7947 U, 43068 0,968 (L)
3:0 0.1194 0,2%13 0.6439  0.6502 0.8211 0.9281 0.9793 0.9%53
o= =00 L RS ] G.2198 0.%591 0.8%29 0.9780 0.9977 U, 9994 1 1
3.2 0.2199 v, 5609 0.8525% 0.977) 0.997% 0.999Y i |
LR 0.2194 0.%6132 0.8%5 0.9790 0.9977 0.999y | 1
100 0.2206 0.5665 0.89%6 0.9798 0.9987 0.9%9Y 1 1



o= -0.1%

n = =-0.5

n = <0.8%

0= =-0.15%

nw 0,5

o= -0.8%

Diversion
Ratio
Box 1:Box 2

Diversion

w D

[OURUTR IRy Ot
Do N

-
[ B N )

TABLE IV

TUE MAX TEST

(Table entries are probab lities of detection (a = 0.05)

Do N

‘Total Diversion
Units are multiples ¢f the (common) standard deviation of each box.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0948 0.1610 0.2583 0.3858 0.5239 0.6655 0.7863 0.8771
0.0951 ©0.1626 0.2664 0.3900 0.5299 0.6733  0.7957 0.8&:1
0.0973  0.1733 0.2858 0.4251 0.5785 0.7269 0.8438 0.91%3
0.1017 ©0.2028 0.3577 0.538 0.7267 C.B8609 0.9472 0.9804
0.1054 0.2031 0.3489 0.5294 0.7077 0.8457 0.9334 0.9803
0.1067 0.2030 0.3529 u.5340 0.7139 0.8486 0.9360 0.9807
0.1¢76 0N.2111 0.3684 0.5568 0.7374 0.B709  0.94B5  0.954b
0.1130 0.2391 0.4336 0.6382 0.8B175 0.9235 0.9766  0.9949
0.1617 0.4303 N.7566 0.9432 0.9928  0.9995 1 |
0.1628 0.4308 0.7574  0.9443 0,9928 0.9995 1 |
0.1650 0.4348 0.7613  0.9457 0.9934 0.9996 | |
0.16BB 0.4555 0.7823 0.9535 0.9953  0.9997 | !
TABLE V
THE v2 TEST

(Table entries are probabilities of detecrion (n = 0,09)

Kat1

Box 1!

- L

(SR R )
O = 0w

LU= ISy U )
O~ W

Total Diversion
Unites are multiples of the (common) standard deviation of each box.

0.5 1.0 1.5 2.0 2.9 J.0 3.5 4.0

0.0¢07 0.0952 v.159] 0.2336 0.3800 0.%210 0.6627 0.7860
0.0609 0.0982 0.1629 0.2622 0.13909 0.5%319 0.6 65 0.7971
0.0625 0.1047 0.18°8 0.3004 0.4400 0.593% 0.7392 0.8520
0.0673 0.1328 0.2525 0.42)0 0.5091 0.7783 0.8492) 0.9566
0.0679  0.1296 0 2424 0.6104 0.5973 0.7653 0.8840 0.9565
0.0680 0.130% 0.2450 0.4169 0.6025% 0.771Y 0.8842 0.9585
0.0706 0..570 0.2627 0.4410 0.6329 0. 8004 0.9094 0.96482
0.0745 0.1602 0.3184 0.5276 0.732) 0.88)2 0.95r0 0.98448

0.1133 ©.3488 0.682% 0.9120 0.'8:7 0.99%0
0.1141 0.3496 0.6848 0.9131% 0.%882 0.9991
0.1167 0.3%2 0.0899 0.9181 0.9889 0.9992
9.120% 0.3%2 0.7226  0.9312 0.9923  0.9997

—— e —
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CORRELATIONE-0.18 STRATEGY=SINGLL BOX DIVERSION
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2. Detection probabilities for single-box Fig. 3. Detection probabilities for 1l:1 diver-
diversion. Units of diversion are 1n sion. Units of diversion are in multi-

multiples of the common standard devia-

.ion.

DETCCTION PROBABLITY

Fig.

ples of the common standard deviation.

CORRCLAT)ON=-0.8% STRATEGY=3:) DIVERSION
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4. Detection probabilities for 3:1 diver-
sion. Units of diversion are in multi-
ples of the common standard devistion.



